
Solution Derivations for Capa #11

Caution: The symbol E is used interchangeably for energy and EMF.
1) DATA: Vb = 5.0 V , R = 155 Ω, L = 8.400 × 10−2 H. In the diagram above, what is

the voltage across the inductor in the instant just after the switch is closed?

Vb = Given
R = Given
L = Given

From Kirchhoff’s Loop law, we can get an equation for the voltages around the
circuit.

Vb − IR− EL = 0

where EL is the EMF of the inductor. Thus,

EL = Vb − IR

Immediately after the switch is closed, there is no current in the circuit. The
resistor and inductor are in series, and the inductor opposes the change in current.
Thus, there is no voltage drop across the resistor and the voltage drop across the
inductor is the initial voltage Vb.

2) After the switch is closed for a long time, what is the energy stored in the inductor?

The energy stored in an inductor is given by

E =
1

2
LI2

The maximum current in this circuit is determined by the battery and the resistor.
From Ohm’s law,

I =
V

R

Thus,

E =
1

2
L

(
V

R

)2

3) The switch in the above diagram is closed after being open a long time. The initial
charge on the capacitor is zero. (For each statement select T True, F False).

QUESTION:
A) In the instant after the switch is closed, the voltage across the capacitor equals
the voltage across the battery.
B) In the instant after the switch is closed, the voltage across the inductor equals
the voltage across the battery.
C) A long time after the switch is closed, the voltage across the capacitor equals
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the voltage across the battery.
D) A long time after the switch is closed, the current through the resistor is zero.

ANSWER:
A) False, initially capacitors act like wires without resistance, so there is no
voltage drop.
B) True, there is no current elsewhere in the circuit, so there are no other voltage
drops. See (#1).
C) True, after a long time a capacitor acts like an infinite resistor, so no current
can flow. Thus, the voltage drop must be equal to the battery.
D) True, see (C).
CAPA is looking for an answer in the form FTTT

4) The next 6 questions refer to this situation: An LR circuit is hooked up to a battery as
shown in the figure, with the switch initially open. The resistance in the circuit is R = 110 Ω,
the inductance is L = 3.40 H and the battery maintains a voltage of E = 30.0 V . At time
t = 0 the switch is closed. What is the current through the circuit after the switch has been
closed for t = 4.57× 10−2 s?

R = Given
L = Given
E = Given
t = Given

For a rising current in an RL circuit, the equation for the current at any time is

I =
E

R

(
1− e

−Rt
L

)
5) What is the voltage across the inductor after the switch has been closed for t =

4.57× 10−2 s?

This is essentially the same circuit as in #1. Thus, the same equation from
Kirchhoff’s loop law can be applied (or easily derived).

EL = Vb − IR

However, there is a current though the resistor at this point which you just
calculated.

6) What is the power dissipation in the resistor at t = 4.57× 10−2 s?

The easiest way to calculate the answer is to use the formula for power

P = I2R

Assuming the time is the same for these problems, the current I was calculated
in (#4) and the resistance was given.
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7) How much energy is stored in the inductor at t = 4.57× 10−2 s?

The energy stored in an inductor is given by

U =
1

2
LI2

where the inductance L was given and the current I was calculated previously.

8) How much work has the battery done from the time the switch was closed until
t = 4.57× 10−2 s?

To solve this problem, you needed to integrate the power equation for the time
length specified (i.e. from t = 0 to t = t0 (Given)). Since this is the work the
battery has done, the logical choice for the power equation would be

P = IV = IE

since the voltage is the EMF. The current is determined by the inductor and
changes with time according to the equation

I =
E

R

(
1− e

−Rt
L

)
The resulting integral is

W =
∫ t0

0

(
E

E

R

(
1− e

−Rt
L

))
dt

=
E2

R2

(
t0R + Le−t0

R
L − L

)
I did this on a TI-92, but it can be verified by hand.

9) How much energy has been dissipated in the resistor from the time the switch was
closed until t = 4.57× 10−2 s?

To find the energy dissipated by the resistor, we must again integrate the power
equation of the time interval specified (from t = 0 to t = t0 (Given)). This time,
the best choice of the power equation is

P = I2R

where I is the current determined by the inductor. It is equal to

I =
E

R

(
1− e

−Rt
L

)
Thus, the energy dissipated is

U =
∫ t0

0
R

(
E

R

(
1− e

−Rt
L

))2

dt

=
1

2

E2

R2

(
−L + 4Let0

R
L + 2t0Re2t0

R
L − 3Le2t0

R
L

)
e−2t0

R
L
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10) The next three questions refer to this situation. A very long solenoid with a circular
cross section and radius r1 = 1.90 cm with ns = 280 turns/cm lies inside a short coil of
radius r2 = 5.00 cm and Nc = 35 turns. If the current in the solenoid is ramped at a constant
rate from zero to Is = 1.40 A over a time interval of 76.0 ms, what is the magnitude of the
emf in the outer coil while the current in the solenoid is changing?

r1 = Given
ns = Given
r2 = Given
Nc = Given
Is = Given
t = Given

This problem is easier if you do #11 first. The magnitude of the EMF is given
by

E2 = −M
dIs

dt
Which we can calculate by

E2 = −M
∆Is

∆t
using M calculated in #11.

11) What is the mutual inductance between the solenoid and the short coil?

The mutual inductance of a coil is given by

M =
φ2

I1

Since the solenoid is enclosed by the outer loop, the flux though the outer loop
will be the same as the flux through the solenoid. Flux is given by

φ =
∫

B · dA = BA

Basically this equation will be true as long as the magnetic field does not vary
over the area of the object. It may vary with time just as long as it is uniform
at any given instant. The total flux in the coil is the number of turns in the coil
multiplied by the flux in each turn. Thus,

M =
Ncφ2

I1

=
NcB1A1

I1

=
Ncµ0nI1A1

I1

= Ncµ0nA1 = Ncµ0n
(
πr2

1

)
Remember to convert n from turns/cm to turns/m.

12) Now reverse the situation. If the current in the short coil is ramped up steadily from
zero to Is = 2.90 A over a time interval of 25.0 ms, what is the magnitude of the emf in the
solenoid while the current in the coil is changing?
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Ic = Given
t = Given

Realizing that the mutual inductance M is a constant for a given configuration
of wire, the EMF is simply given by the equation

E2 = −M
dIc

dt

Which we can calculate by

E2 = −M
∆Ic

∆t

13) A very long solenoid with a circular cross section and radius r = 5.10 cm with
n = 1.60 × 104 turns/m has a magnetic energy density uB = 7.80 mJ/m3. What is the
current in the solenoid?

r = Given
n = Given
uB = Given

The equation for magnetic energy density is

uB =
B2

2µ0

which we can use to solve for B: √
2µ0uB = B

Knowing the magnetic field of a solenoid, we can now find the current:√
2µ0uB = B = µ0nI

I =

√
2µ0uB

µ0n

14) What is the total energy stored in the solenoid if its length is 0.780 m? (Neglect end
effects.)

l = Given

The easiest way to do this problem is to realize the magnetic energy density given
in #13 is just the magnetic field energy per volume. Thus, if we can find the
volume of a solenoid of length l, we can find the energy stored in it. A solenoid
is basically a cylinder. The volume of which is

V = πr2l

Thus, the energy is
U = uBV = uBπr2l
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15) The switch in the following circuit has been open for a long time. The switch is then
closed. The current through the battery immediately after the switch is closed is I(t = 0)
and the value at very large t is I(t = ∞). Calculate the ratio I(t = 0)/I(t = ∞).

E = Given
R1 = Given
R2 = Given
L = Given

An inductor has mainly opposite properties than those of a capacitor. Thus,
initially it acts like an infinite resistance and after a long time it acts like a piece
of wire. The ratio of the current initially (I0) to the final current (I∞) can be
calculated in two steps.

1) Since no current initially flows through the inductor, it must flow through the
other two resistors. Imagine the circuit as being open where the inductor is so
that the two resistors are in series. Using Ohm’s law,

I0 =
V

R
=

E

R1 + R2

2) After a long time, the inductor acts like a piece of wire (effectively zero resis-
tance). Thus, all the current will flow through it. Imagine R2 has been removed
from the circuit. Then, only R1 determines the current.

I∞ =
V

R
=

E

R1

Taking the ratio of these two yields the final answer

I0

I∞
=

E
R1+R2

E
R1

=
R1

R1 + R2

16) A circular coil with one turn is in a perpendicular (time dependent) magnetic field
given by B = 1.500− 0.0800t Tesla, where time t is in seconds. The induced voltage in the
loop is 2.56 V . Calculate the radius of the coil.

B(t) = Given
E = Given

From Faraday’s law, we know the induced EMF is given by

E = −dφ

dt
= − d

dt

(∫
B · dA

)
= − d

dt
BA

E = −A
d

dt
B

A = πr2 = − E
dB
dt

r =

√√√√− E

π dB
dt

6



The signs work out okay since the derivative of B(t) is negative.

17) A 230 turn conducting coil with a radius of 15.7 cm rotates at a frequency of f =
70.0 Hz in a magnetic field B = 0.210 T . Calculate the generated rms emf. The rms
(root-mean-square) value of a sinusoidal quantity is the amplitude divided by root of 2.

N = Given
r = Given
f = Given
B = Given

Example 31-6 on page 792 of the text is exactly the same as this problem. The
spinning coil is a generator. The equation for the induced EMF as a function
of time is derived. However, we are only concerned with the peak voltage. The
equation given is

E = 2πNfBA sin (2πft)

The EMF will be maximum when sin is 1, so we can ignore the last term. Simply
plugging into the equation (where A is the area of the coil)

E = 2πNfBπr2 = 2π2NfBr2

The rms EMF is the maximum voltage divided by the root of 2. Thus,

Erms =
2π2NfBr2

√
2

=
√

2π2NfBr2
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